Das Schaufenster Baden-Württemberg elektrisiert
Das Schaufenster Baden-Württemberg elektrisiert

Ich danke den über 100 Partnern, die sich im Rahmen des Schaufensters Elektromobilität in Baden-Württemberg engagiert haben. Durch mehr als zwei Jahre Projektarbeit berichtet die vorliegende Publikation, was bisher erreicht und in Projekt- und Schaufensterregionen weiter ausgeführt und der Erfolg und die nüchterne Betrachtung der notwendigen weiteren Schritte.

In den vier Schaufensterregionen fahren mehr als 60 Prozent der am 01.01.2015 in Deutschland zugelassenen reinen Elektrofahrzeuge, dazu entstehen bis Ende der Projeklaufzeit über 5.000 öffentlich zugängliche Ladepunkte. Mehr als 300 Partner haben in 137 Projekten – verteilt auf die vier Regionen Baden-Württemberg, Berlin-Brandenburg, Bayern-Sachsen und Niedersachsen – erfolgreich in einem der komplexesten Forschungs- und Entwicklungsprojektverbünde zusammengearbeitet. Viel wertvoller als diese Zahlen ist jedoch, dass die vier Schaufenster als zentrales Element der Marktvorbereitung gezielt ihrem Auftrag das System Elektromobilität im all seinen Facetten aufgegriffen und in ihren F&E-Projekten gereift haben, dass und wie Elektromobilität im Alltag funktioniert.

Es mag paradox klingen, aber trotz der Informationsüberflutung unseres alltäglichen Lebens war die Unsicherheit über die richtigen Entscheidungen selten so groß wie heute. Lassen Sie uns die aufgebauten Netzwerke wie die Schaufenster Elektromobilität und die Erkenntnisse aus der erfolgreichen Arbeit der vergangenen Jahre nutzen, um sinnvolle Aktivitäten zu versteigern, neue Projekte zu entwickeln und den Weg zur automatisierten, vernetzten und elektrischen Mobilität der Zukunft energisch weiter voranzutreiben.

Winfried Kretschmann, MdL
Ministerpräsident des Landes Baden-Württemberg

Franz Loogen
Geschäftsführer e-mobil BW GmbH
Elektromobilität in der Praxis erforschen und die Region Stuttgart und die Stadt Karlsruhe zu einem lebendigen Labor für neue Mobilitätslösungen machen – das ist das gemeinsame Ziel der 34 geförderten Projekte, die unter dem Namen LivingLab BW e mobil im Rahmen des Förderprogramms Schaufenster Elektromobilität laufen. Neben der Bundesregierung fördern auch das Land Baden-Württemberg und die Region Stuttgart Projekte im LivingLab BW e mobil, um Elektromobilität voranzubringen und für die Öffentlichkeit sicht- und erlebbar zu machen.

Im Zentrum des Forschungsverbundes steht die Frage, wie Elektromobilität heute schon intelligent in unser Verkehrs- und unsere Lebenswelt integriert werden kann. Im LivingLab BW e mobil wird Elektromobilität vom Pedelec über den PKW bis hin zu Bussen und Nutzefahrzeugen eingesetzt und in der täglichen Anwendung getestet. Auch die Entwicklung nachhaltiger Mobilitätszusysteme und tragfähiger Geschäftsmodelle steht im Fokus des groß angelegten Demonstrationsvorhabens.

Neun zentrale Themenfelder für die Mobilität der Zukunft

Regelung der Projekte

Reden wir darüber:

Kommunikation des LivingLab BW mobil

Neben dem inhaltlichen Austausch mit den einzelnen Projekten durch regelmäßige Projektleitertreffen, jährliche Partnerversammlungen sowie individuelle Gespräche kümmerte sich die Projektleitstelle vor allem auch um die gemeinsame Kommunikation des Projektverbundes, z. B. durch Einstellung der Projektbroschüre im Frühjahr 2014.

Das Team der Projektleitstelle zur WORLD OF ENERGY SOLUTIONS 2014

Wie geht es weiter?

Die Projektleitstelle kommunizierte das LivingLab BW mobil neben vielen kleineren Veranstaltungen u. a. beim Evangelischen Kirchentag in Stuttgart 2015 (rd. 95.000 Besucher). Ein besonderes Highlight war der Weltrekord für die längste Elektrofahrzeug-Parade im Jahr 2014, den das LivingLab BW mobil gemeinsam mit der Elektrofahrzeug-Rallye WAVE mit 481 Fahrzeugen aufstellen konnte.

Die Projektleitstelle unterstützte durch Antragsberatungen der einzelnen Projektkonsortien für jedes Projekt einen kurzen Projektfilm gedreht. Die Projektfilme begleiteten das LivingLab BW mobil anschließend auf vielen Veranstaltungen, Messen und Kongressen.

Intermodalität
Wohnen und Elektromobilität
Stadt- und Verkehrsplanung
STUTTGART SERVICES

STUTTGART SERVICES
Vernetzt weiterkommen in Stuttgart und Region

polygo -
Mobilität und Services in der Region Stuttgart:
- Elektromobilität
- Städtische Angebote
- Shopping & Bezahlen

Projektverlauf und Ergebnisse

Ausblick

Unter der Marke polygo – Mobilität und Services in der Region Stuttgart sollen polygoCard, Portal und mobile Anwendung als einheitliches Informations- und Zugangsmedium zahlreiche Bürger motivieren, elektromobile und multimodale Angebote zu nutzen.

Projektbeschreibung

Die polygoCard pay – Mobilität, Shopping, städtische Angebote
Schnittstellen die Möglichkeit bieten, weitere Anbieter von der Information über die Reservierung bis hin zu den Leistungsumfang integriert werden. Denkbar ist, den polygo Ansatz auf weitere Kommunen in der Region Stuttgart und perspektivisch sogar darüber hinaus zu übertragen.

Laufzeit: 02/2013 – 06/2016

Fördermittelgeber: Bundesministerium für Wirtschaft und Energie

Ansprechpartner:
Philipp Hinger
Stuttgarter Straßenbahnen AG
Schockenriedstr. 50
70565 Stuttgart
T +49 711 7885 2918
stuttgart-services@mail.ssb-ag.de

Vermarkter:
Kartendienstleister: stuttgart services mediation GmbH & Co. KG
Veranstalter: Landeshauptstadt Stuttgart - KöR, Stadtmarketing GmbH
Vertriebspartner: stadtmobil carsharing AG, ecos new media GmbH & Co. KG

Laufzeit: 02/2013 – 06/2016

Fördermittelgeber: Bundesministerium für Wirtschaft und Energie

Ansprechpartner:
Philipp Hinger
Stuttgarter Straßenbahnen AG
Schockenriedstr. 50
70565 Stuttgart
T +49 711 7885 2918
stuttgart-services@mail.ssb-ag.de

Vermarkter:
Kartendienstleister: stuttgart services mediation GmbH & Co. KG
Veranstalter: Landeshauptstadt Stuttgart - KöR, Stadtmarketing GmbH
Vertriebspartner: stadtmobil carsharing AG, ecos new media GmbH & Co. KG
Sponsoren:...
NETZ-E-2-R

Vernetzte E-Bike-Anschlussmobilität an Bahnhaltepunkten in der Region Stuttgart

Projektbeschreibung

Projektverlauf und Ergebnisse

Im Rahmen des Projekts wurden zwei Standardbauweisen (Stahlbau und Holzbau) für die Stationen entwickelt, die auf Grundlage des Feedbacks der Kommunen und Nutzer laufend optimiert wurden. Das modulare Konzept für die Ausstattung der Stationen ermöglicht im Vollausbau mit einer Photovoltaik-Anlage auf dem Dach und einem Pufferspeicher einen nahezu energieautarken Betrieb. Die erstmals in Ludwigsburg realisierte Station in Holzbauweise ist durch ihre kostengünstige Versetzbarkeit auch flexibel einsetzbar.

In allen Stationen kommt ein Pedelec zum Einsatz, das im Rahmen des Projekts eigens für den Ausleihbetrieb entwickelt wurde. Das robuste Zweirad, das sich beim Abholen an die Halterung selbständig lädt, ist eine wichtige Voraussetzung für den Rund-um-die-Uhr-Betrieb.

Die Vernetzung der Stationen ermöglicht die ganzjährige „Einwegausleihe“, so dass eine Rückgabe der Pedelecs auch an den anderen Stationen möglich ist. Dies erhöht die Attraktivität für touristische Tagesnutzer.

Ausblick

Für das Mobilitätskonzept der Landesgartenschau 2019 im Remstal bieten die E-Bike-Stationen den Grundstein für die Ausweitung des E-Bike-Verleihsystems auf weitere Kommunen, um den Besucherinnen und Besuchern der Gartenschau die Nutzung dieser umweltfreundlichen Form der Mobilität zu ermöglichen.

Laufzeiten

- Preiseverleihung „Land der Ideen“

Anspruchspartner:

Rainer Gessler
Ministerium für Verkehr und Infrastruktur Baden-Württemberg, Geschäftsstelle „Nachhaltig mobile Region Stuttgart“ (NAMOREG)
Hauptstätter Straße 67, 70178 Stuttgart
T: +49 711 231 5661
rainer.gessler@mvi.bwl.de

Fördermittelgeber:
Verband Region Stuttgart, Ministerium für Verkehr und Infrastruktur Baden-Württemberg

Projektmitarbeit:
- Ministerium für Verkehr und Infrastruktur Baden-Württemberg
- „Nachhaltig mobile Region Stuttgart“ (NAMOREG)
- Verband Region Stuttgart
- Wirtschaftsförderung Region Stuttgart GmbH
- Verkehrs- und Tarifverbund Stuttgart GmbH (VVS)
- nextbike GmbH
- Stadt Bietigheim-Bissingen
- Stadt Fellbach
- Stadt Filderstadt
- Stadt Gerlingen
- Stadt Göppingen
- Stadt Heilbronn
- Stadt Holzgerlingen
- Gemeinde Kirchheim am Neckar
- Stadt Ludwigsburg
- Stadt Plochingen
- Stadt Remseck am Neckar
- Stadt Schwieberdingen
- Stadt Vaihingen an der Enz
- Stadt Waiblingen
GuEST
Gemeinschaftsprojekt Nutzungsuntersuchungen von Elektrotaxis in Stuttgart

Projektbeschreibung
Das Gemeinschaftsprojekt von Bosch, DEKRA, FKFS, Taxizentrale Stuttgart sowie ZIRIUS (Universität Stuttgart) will die Potenziale der Elektromobilität durch Kommunikation und v. a. den praktischen Betrieb von rein elektrischen Taxis vermitteln. Als Forschungsprojekt untersucht GuEST, wie sich Elektrofahrzeuge im alltäglichen Taxibetrieb bewähren. Dazu nimmt das Projekt eine integrative Perspektive ein, erstens durch transdisziplinäre Kooperation von Forschung und Praxis: Zusammen mit den eingebundenen Taxiunternehmern sollen Erfolgsfaktoren für ein tragfähiges Betriebsmodell entwickelt werden. Außerdem untersucht das Projekt Kernfragen in drei Schwerpunkten:

1. Technische Faktoren (Fahrzeuge, Ladeinfrastruktur, Ladetechnik, optimales Ladeverhalten etc.)
2. Soziale und gesellschaftliche Faktoren (Aufgeschlossenheit gegenüber E-Taxis, Nutzungsbereitschaft etc.)
3. Wirtschaftliche Faktoren (Optimierte Vermittlung der E-Taxis, Nutzen-Kosten etc.)

Der integrative Ansatz über die Dimensionen Technik, Wirtschaft, Umwelt und Gesellschaft ist ein zentrales Merkmal von GuEST und schafft Anknüpfungspunkte zum Konzept der nachhaltigen Entwicklung.

Projektverlauf und Ergebnisse

Die Bilanz der ersten sechs Betriebsmonate: über 5.000 Fahrgäste, mehr als 50.000 Fahrkilometer. Über 90 % der Fahrten fanden im Stadtgebiet Stuttgart statt. Es gab auch Überlandfahrten in die Region. In der Tabletbefragung im Taxi äußerten sich über 90 % der Kunden ausgeprägt zufrieden. Fast 70 % der Befragten wollten anderen über ihre Erfahrungen im E-Taxi berichten.

Ausblick

Ausblick

Ausblick

Ausblick

Ausblick
HyLine-S
Betrieb einer reinen Hybridbuslinie mit Plug-In Funktionalität in Stuttgart

Projektbeschreibung

Projektverlauf und Ergebnisse

Ausblick
Die Projekterkenntnisse zu Betriebs- und Einsatzmanagement, Werkstattausrüstung, Zuverlässigkeit sowie Energieeffizienz und Emissionen werden für die zukünftige Gestaltung der SSB Busflotte genutzt und werden damit Teil der SSB Nachhaltigkeitsstrategie, die zum Ziel hat, einen möglichst ressourceneffizienten, umweltfreundlichen und wirtschaftlich vertretbaren ÖPNV in Stuttgart anzubieten.

Ansprachpartner:
Markus Wiedemann
Stuttgarter Straßenbahnen AG
Schockenriedstrasse 52
70565 Stuttgart
T: +49 711 7885 6203
Markus.Wiedemann@mail.ssb-ag.de

Dieselhybridbusse im Einsatz auf der Linie 43

Dieselhybridbusflotte der SSB AG

McGraw Hill
Fellbach ZEROplus
Neue Mobilität für ein neues Wohnquartier

Laufzeit: 11/2012 – 06/2016
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:
- Fraunhofer-Institut für Solare Energiesysteme ISE
- Stadt Fellbach
- brucker architekten

Elektrofahrzeug im privaten Alltag: Laden an Fraunhofer Ladepunkt

Projektbeschreibung
Solarstrom vom eigenen Dach, energieeffizientes Eigenheim, Elektroauto in der Garage – wie funktioniert maximale Eigenstromnutzung für das Elektroauto im privaten Haushalt?

In privaten Haushalten kann die Elektromobilität ihre Vorteile vor allem dann ausspielen, wenn das Fahrzeug täglich genutzt wird und der Strom zur Ladung der Batterien kostengünstig und ökologisch aus der eigenen Solaranlage kommt. Dieser Ansatz wurde in einem Forschungsprojekt des Fraunhofer-Instituts für Solare Energiesysteme (ISE) verfolgt und mit fünf Haushalten in Energieplus-Häusern in Fellbach verwirklicht.

Das HEMS basiert auf dem Fraunhofer-Framework openMUC (http://www.openmuc.org/) und kann modular erweitert werden.

Projektverlauf und Ergebnisse

Das HEMS und die Anwenderschnittstelle

Ausblick

Maximale Eigenstromnutzung beim Laden von E-PKW
- Ökologische und finanzielle Vorteile
- Möglichkeit der Netzlastbasiert
- Auch für Flotten und Carsharing möglich
- Einbindung von Wärmepumpen und Solarspeichern möglich
- Bedienung mit intuitiver Nutzerschnittstelle

Laufzeit: 11/2012 – 06/2016
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:
- Fraunhofer-Institut für Solare Energiesysteme ISE
- Stadt Fellbach
- brucker architekten

Ansprechpartner:
Dominik Noeren
Fraunhofer-Institut für Solare Energiesysteme ISE
Heidenhofstr. 2
79110 Freiburg
T. +49 761 4588 5455
dominik.noeren@ise.fraunhofer.de
Wohnen und Elektromobilität im Rosensteinviertel Stuttgart

Neue Mobilität für ein neues Wohnquartier

Laufzeit: 12/2012 – 06/2016

Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur

Projektnetzwerk

www.siedlungswerk.de
Aktivhaus B10 – Architektur und Mobilität für Morgen
Das E-Lab in der Weißenhofsiedlung

B10 ist das erste Aktivhaus der Welt.
Gebäude erzeugt das Doppelte seines Energiebedarfs selbst.
Mit Überschuss werden zwei Elektroautos geladen und das Weißenhofmuseum versorgt.

Projektbeschreibung

Projekterverlauf und Ergebnisse

Ausblick

Ansprechpartner:
Prof. Dr. Dr. h.c. Werner Sobek
Werner Sobek Group
70597 Stuttgart
T: +49 711 76750 38
mail@wernersobek.com
Projektbeschreibung

In Kooperation mit dem Schaufensterprojekt Stuttgart Services werden die Funktionalitäten einer überregional einzusetzbaren Mobilitäts-App abgestimmt.

Ausblick

Projektbeschreibung

Projektverlauf und Ergebnisse

Ausblick

Entwicklung eines stundengenauen Energiesimulationssystems aus erneuerbarer Energieerzeugung, Energieverbräuchen und elektrischen Mobilitätsbedarfen
- Ermittlung branchenspezifischer Mobilitätsprofile
- Tests zur Implementierung von Vehicle2Grid in Gewerbegebieten
- Erforschung energetischer Nutzbarkeit von betrieblicher eMobilität

Ausstellungsöffnung der eStation

Projektleitung

Michael Metzger
EFG – Engineering Facility Group
Friolzheimer Straße 3
70499 Stuttgart
T. +49 711 882143563
michael.metzger@efg-gmbh.de

Laufzeit: 02/2013 – 06/2016
Fördermittelgeber: Bundesministerium für Wirtschaft und Energie
Projektpartner:
- EFG – Engineering Facility Group
- Schäfer GmbH & Co. KG
- Städtebau-Institut – Universität Stuttgart

Anspruchspartner:
- Michael Metzger
EFG – Engineering Facility Group
Friolzheimer Straße 3
70499 Stuttgart
T. +49 711 882143563
michael.metzger@efg-gmbh.de
eVerkehrsraum Stuttgart

Die Elektromobilität erhält Einzug in die Verkehrsplanung

Projektbeschreibung

Projektverlauf und Ergebnisse

Ausblick

Projektbegleitender Ansprechpartner:

Dr.-Ing. Martin Kagerbauer
Karlsruher Institut für Technologie (KIT)
Institut für Verkehrswesen (IfV)
Kaiserstraße 12
76131 Karlsruhe
T . +49 721 608 47734
martin.kagerbauer@kit.edu

Laufzeit: 01/2013 – 12/2015
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:

Karlsruher Institut für Technologie (KIT) | Institut für Verkehrswesen (IFV)
Flotten und gewerbliche Verkehre
Energie, Infrastruktur und IKT
Fahrzeugtechnologie
Projektbeschreibung

Unter Berücksichtigung der untersuchten Fahrprofile im Projekt sowie der Kosten- und Nutzenbewertungen ergeben sich dadurch heute bereits Nischen, in denen Elektrofahrzeuge für Unternehmen sinnvoller sein könnten als konventionelle Fahrzeuge. In den überwiegenden Fällen ergab sich zum Projektzeitpunkt aber eine negative Bilanz in der Vollkostenrechnung. Es ist zu beobachten, dass kleine und mittelständische Unternehmen bei der Elektrifizierung der Fahrzeugflotte im Mittel eine höhere Zahlungsbereitschaft aufweisen als Großunternehmen.

Ausblick

Landesfuhrpark
Das Land als Vorbild für mehr Elektromobilität

Projektbeschreibung
Die Landesregierung geht beim Klimaschutz mit gutem Beispiel voran. Im Klimaschutzgesetz ist die Vorbildfunktion der Landesverwaltung festgeschrieben. Damit einher geht auch die Aufgabe und Verpflichtung, die Mobilität in den Dienststellen der Landesverwaltung klima- und umweltfreundlicher zu gestalten. Die Landesregierung möchte die CO₂-Emissionen für ihre Dienstfahrzeuge zur Personenbeförderung auf einen Flottenmix von 95 g/km bis zum Jahr 2020 senken.

Projektverlauf und Ergebnisse

Ausblick
Die Landesverwaltung wird den erfolgreich eingeschlagenen Weg zur schrittweisen Elektrifizierung der Landesfahrzeugflotte weiter fortführen. Die bislang anvisierte Obergrenze von 130 g CO₂/km wird mit ca. 95,5 g CO₂/km erreicht.

Festlegung einer Quote von 10 % zur Elektrifizierung der definierten Fuhrparks durch den Ministerrat – diesem Ziel nähert sich die Landesregierung an.
Ein Mobilitäts-Modell, das Grenzen überschreitet

Projektbeschreibung
Kann man mit dem E-Fahrzeug in bestimmten Anwen-
dungen gegenüber einem konventionellen Fahrzeug sogar
Geld sparen? Dieser Frage sind die Firmen Michelin und
Siemens gemeinsam mit dem Karlsruher Institut für
Technologie, dem Fraunhofer-Institut für System- und
Innovationsforschung ISI und dem Mobilitätsdienstleis-
ter e-Motion Line im Projekt RheinMobil nachgegangen.

In der Begleitforschung wurden sowohl physikalisch–tech-
nische Fragestellungen über den Energieverbrauch und
hochbeachtete Verhalten der Batterien nach-
gangen sowie Optimierungspotenziale aufgezeigt, als
auch die Nutzerakzeptanz und der ökologische Mehrwert
von E-Fahrzeugen betrachtet.

Projektverlauf und Ergebnisse
Im Projekt sind wie geplant sieben E-Fahrzeuge zum Ein-
satz gekommen sowie dreizehn konventionelle und drei
Gleichstromschnellladungsladepunkte aufgebaut worden.
Hinsichtlich der Auslastungssituation konnte das dritte
Pendlermodell, in dem sich bis zu vier Gruppen ein Fahr-
zeuge teilen, nicht umgesetzt werden. Dies lag daran, dass
die realen Energieverbräuche im Betrieb deutlich
höher und die Einzeltrecken länger waren, als ursprüng-
lieh prognostiziert. Eine Herausforderung war die Sicher-
stellung der hohen Fahrzeugverfügbarkeit, die zum Teil
bei den Leistungselektronikkomponenten noch Verbeve-
rungspotenzial aufgezeigt hat. Der phasenweise aus-
schließliche Einsatz von Gleichstromschnellladung hat
vereinzelt zu technischen Problemen geführt.

Die durchgeführte Gesamtkostenanalyse prognostiziert
den Break-even im Vergleich zu einem konventionellen
Fahrzeug bei ca. 200.000 km. Auch wenn dies während
der Laufzeit nicht erreicht wurde, demonstriert das Pro-
jekt, dass es auch gegenwärtig schon Profile gibt, in denen
eine Umstellung der Mobilität längerfristig finanzielle
Vorteile mit sich bringen kann. Im Vergleich zu konventi-
onellen Fahrzeugen sind in der Klimabilanz Fahrleistun-
gen von 30.000 km (Ökostrom) bis ca. 100.000 km (im
Strom-Mix: 50 % DE/50 % FR) notwendig, um einen öko-
logischen Mehrwert zu erreichen. Bisherige Analysen zei-
gen, dass E-Fahrzeuge im Pendelverkehr bei den Nutzern
nicht die sonst üblichen Bedenken, wie z. B. Reichweiten-
einschränkung, hervorrufen. Insgesamt zeigen die Er-
gebnisse, dass sich aus technischer, ökologischer und
perspektivisch auch ökonomischer Sicht, auch bei an-
sprechvollen Fahrprofilen und hohen Verfügbarkeitsan-
forderungen, die Anwendung sehr gut für den Einsatz von
E-Fahrzeugen eignet.

Ausblick
Die Ergebnisse haben gezeigt, dass die Elektrifizierung
des Pendler- und Dienstfahrtenverkehrs mit der aktuellen
Technologie technisch umsetzbar und perspektivisch
auch ökonomisch lohnenswert sein kann. Die eingesetz-
ten Fahrzeuge werden auch nach dem Projektlaufzeitende
im Einsatz bleiben. Weiterhin ist es denkbar, das Projekt
mit aktuellen Serienfahrzeugen zu erweitern. Zusätzlich
kann die im Projekt gewonnene Betriebserfahrung
genutzt werden, um weitere Unternehmen auf dem Weg
eine nachhaltige Mobilitätsumstellung zu begleiten.

38

Flotten und
gewerbliche Verkehre
Urbaner Logistischer Wirtschaftsverkehr
Elektromobilität in der innerstädtischen Paketzustellung

Projektbeschreibung
Unter wissenschaftlicher Leitung des Fraunhofer IAO kooperieren in dem Schausensterprojekt Urbaner Logistischer Wirtschaftsverkehr die drei großen Paketdienstleister Deutsche Post DHL, DPD und UPS. Gemeinsam untersuchen die Logistikunternehmen in drei Städten in Baden-Württemberg, wie sich eine stärkere Elektrifizierung auf den innerstädtischen Lieferverkehr auswirkt.

Projektverlauf und Ergebnisse
Im Zuge des Projekts wurden 28 elektrische Lieferfahrzeuge erfolgreich in die Flotten der drei Paketdienstleister implementiert. Die Fahrzeuge umfassen dabei das gesamte Spektrum der in der Paketzustellung üblichen Lieferfahrzeuge vom Kleintransporter bis zum 7,5 t-Lkw. Der durchschnittliche Energieverbrauch/100 km bei UPS betrug 55 kWh (EFA-S P80), bei DPD 32,5 kWh (Vito E-Cell) und bei DPDHL 30 kWh (Vito E-Cell).

Dabei haben sich die elektrischen Fahrzeuge als voll praxistauglich erwiesen. Dies äußert sich auch in der überwiegend positiven Resonanz durch die Zusteller, welche die guten Fahrzeigenschaften sowie die einfache Bedienbarkeit hervorheben. Demgegenüber besteht weiterhin Forschungsbedarf bei der Ladetechnik: Während sich bei einem Unternehmen die eingesetzten Ladestationen als unzuverlässig erwiesen haben, zeigten sich an kleinen Verteilzentren bereits bei kleinen Flotten Probleme mit der lokalen Energieversorgung (Anschlussleistung). Trotzdem sind die Ausfallquoten der elektrischen Lieferfahrzeuge vergleichsweise gering und bis auf wenige kleine Zwischenfälle sind sie zuverlässig im Einsatz.

Für die Paketdienstleister sind zudem die zahlreichen positiven Reaktionen von Kunden und Passanten ein Hinweis, dass Investitionen in eine stadtverträglichere Logistik positiv wahrgenommen werden. Eine aktuelle Wirtschaftlichkeitsbetrachtung zeigt, dass die Fahrzeuge aufgrund geringer Stückzahlen und fehlender Langzeiterfahrungen momentan nur modellhaft mit dieselbetriebenen Großserien-Fahrzeugen verglichen werden können. Trotzdem sind die Ausfallquoten der elektrischen Lieferfahrzeuge vergleichsweise gering und bis auf wenige kleine Zwischenfälle sind sie zuverlässig im Einsatz.

Flotten- und gewerbliche Verkehre
Laufzeit: 11/2012 – 06/2016
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:
UPS Deutschland Inc. & Co OHG ☑ Deutsche Post DHL Group ☑ DPD Dynamic Parcel Distribution GmbH & Co. KG ☑ Fraunhofer IAO
Assoziierte Partner:
Daimler AG ☑ Landeshauptstadt Stuttgart ☑ Stadt Karlsruhe ☑ Stadt Ludwigsburg

Insgesamt wurden im Projekt 462.000 km elektrisch zurückgelegt (DPD: 95.000 km, Deutsche Post DHL: 215.000 km, DPD: 152.000 km)

Dabei betrugen die durchschnittliche Tourenlänge pro Tag bei DPD 60 km, bei DPDHL 30,5 km und bei UPS 67 km.

Durchschnittliche Energieverbräuche bei DPD: 30 kWh (Vito E-Cell), bei DPDHL 32,5 kWh (Vito E-Cell) und bei UPS 55 kWh (EFA-S P80).

Steffen Rabier
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart
T +49 711-9702333
steffen.raiber@iao.fraunhofer.de

Projektverlauf und Ergebnisse
Im Zuge des Projekts wurden 28 elektrische Lieferfahrzeuge erfolgreich in die Flotten der drei Paketdienstleister implementiert. Die Fahrzeuge umfassen dabei das gesamte Spektrum der in der Paketzustellung üblichen Lieferfahrzeuge vom Kleintransporter bis zum 7,5 t-Lkw. Der durchschnittliche Energieverbrauch/100 km bei DPD betrug 30 kWh (Vito E-Cell), bei DPDHL 32,5 kWh (Vito E-Cell) und bei UPS 55 kWh (EFA-S P80).

Dabei haben sich die elektrischen Fahrzeuge als voll praxistauglich erwiesen. Dies äußert sich auch in der überwiegend positiven Resonanz durch die Zusteller, welche die guten Fahrzeigenschaften sowie die einfache Bedienbarkeit hervorheben. Demgegenüber besteht weiterhin Forschungsbedarf bei der Ladetechnik: Während sich bei einem Unternehmen die eingesetzten Ladestationen als unzuverlässig erwiesen haben, zeigten sich an kleinen Verteilzentren bereits bei kleinen Flotten Probleme mit der lokalen Energieversorgung (Anschlussleistung). Trotzdem sind die Ausfallquoten der elektrischen Lieferfahrzeuge vergleichsweise gering und bis auf wenige kleine Zwischenfälle sind sie zuverlässig im Einsatz.

Die drei kooperierenden Logistikunternehmen mit jeweils einem Fahrzeug zu Gast im Zentrum für Virtuelles Engineering ZVE des Fraunhofer IAO in Stuttgart
eFleet – elektrische Vorfeldfahrzeuge am Flughafen Stuttgart

Gewerbliche Flotten an Flughäfen

Flughäfen sind perfekte Anwendungsfälle für e-mobile Konzepte. Bis zu 80 % an Energieeinsparung sind heute bereits realisierbar.

Im Projekt wurden:
- 12.000 Flugzeuge geschleppt
- 90.000 km zurückgelegt
- 1,5 Mio. Gepäckstücke sicher transportiert
- 300.000 Passagiere befördert

Übersicht der eFleet Fahrzeuge am Flughafen Stuttgart

Flugzeugtransporte unterwegs

Den vorliegenden Betriebsergebnissen zufolge wurden Folgende Projektergebnisse erzielt:

1. Eignung der Fahrzeuge: Alle Fahrzeuge konnten dauerhaft erfolgreich im rauen Schichtalltag eingesetzt werden.
2. Fahrerakzeptanz: In dem Augenblick, ab dem anfängliche Kinderkrankheiten beseitigt wurden, waren die eFahrzeuge bei den Fahrern durchweg beliebt und wurden gerne eingesetzt.
4. Die Verfügbarkeit der eFahrzeuge ist gleich oder besser als beim Dieselfahrzeug, die Flottengröße ändert sich durch den Einsatz von batterieelektrischen Fahrzeugen nicht.

Haupterkenntnis von eFleet ist, dass Flughäfen ein prädestinierter Anwendungsfall für den erfolgreichen Einsatz von batterie-elektrischen Fahrzeugen sind.

Parallel wurde ein Mess-Datenkonzept erstellt, dass zu jedem beliebigen Zeitpunkt die Leistungs- und Performancedaten des Fahrzeuges ausweisen und der zu diesem Zeitpunkt herrschenden Auftragssituation aus der Flughafenerfahrung gegenüberstellen kann.

Anschließend wurden die Fahrzeuge beschafft, die elektrische Ladeinfrastruktur auf dem Vorfeld des Flughafens aufgebaut, über 100 Fahrer auf die Fahrzeuge eingewiesen und produktiv genommen.

Folgende Projektergebnisse wurden erzielt:

- 12.000 Flugzeuge geschleppt
- 90.000 km zurückgelegt
- 1,5 Mio. Gepäckstücke sicher transportiert
- 300.000 Passagiere befördert

Flugzeugtransporte unterwegs

Den vorliegenden Betriebsergebnissen zufolge wurden Folgende Projektergebnisse erzielt:

1. Eignung der Fahrzeuge: Alle Fahrzeuge konnten dauerhaft erfolgreich im rauen Schichtalltag eingesetzt werden.
2. Fahrerakzeptanz: In dem Augenblick, ab dem anfängliche Kinderkrankheiten beseitigt wurden, waren die eFahrzeuge bei den Fahrern durchweg beliebt und wurden gerne eingesetzt.
4. Die Verfügbarkeit der eFahrzeuge ist gleich oder besser als beim Dieselfahrzeug, die Flottengröße ändert sich durch den Einsatz von batterieelektrischen Fahrzeugen nicht.

Haupterkenntnis von eFleet ist, dass Flughäfen ein prädestinierter Anwendungsfall für den erfolgreichen Einsatz von batterie-elektrischen Fahrzeugen sind.

Parallel wurde ein Mess-Datenkonzept erstellt, dass zu jedem beliebigen Zeitpunkt die Leistungs- und Performancedaten des Fahrzeuges ausweisen und der zu diesem Zeitpunkt herrschenden Auftrags-
Umweltfreundliche Kommunalfahrzeuge
eKommunalfahrzeuge

Projektbeschreibung

Projektverlauf und Ergebnisse

Die ersten fünf entwickelten eKommunalfahrzeuge wurden an Kommunen für den Testbetrieb übergeben. Dabei werden Daten aufgezeichnet, die präzise Informationen über die verschiedenen Einsatz- und Lastprofile liefern. Mit diesen gewonnenen Erkenntnissen können die eingesetzten Energiewandler optimiert werden, um die Einsatzmöglichkeiten der Hybridfahrzeuge zu erweitern.

Ausblick

2,5 Jahre Entwicklungszeit
250 Teststunden
5 Feldtestmaschinen
2,5 Stunden Einsatzdauer bei rein elektrischem Betrieb
Aufbau Ladeinfrastruktur Stuttgart und Region

Ausbau öffentlicher Ladeinfrastruktur für Elektrofahrzeuge in Stuttgart und der Region

Das Projekt Aufbau Ladeinfrastruktur Stuttgart und Region

Das Projekt Aufbau Ladeinfrastruktur Stuttgart und Region schafft die Grundlage für die Erforschung eines wirtschaftlichen Betriebs öffentlicher Ladeinfrastruktur.

EnBW Ladestation „elektrisiert“ einen e-smart von car2go in Stuttgart

Projektbeschreibung

Projektverlauf und Ergebnisse

Entwicklung einer zukunftsweisenden Ladestation

Im Projekt ALIS wurde eine neue Ladestation entwickelt, die allen aktuellen technischen Anforderungen an Nutzerfreundlichkeit wie auch Betrieb entspricht. Gleichzeitig wurde bei der Entwicklung sichergestellt, dass weitere zukünftige technische Funktionen realisiert werden können.

Errichtung der Ladestationen und Vorbereitung des Betriebs

Ladeinfrastruktur schafft Grundlage für Erforschung zentraler E-Mobilitätsfragen

Ausblick: Wirtschaftlicher Betrieb öffentlicher Ladeinfrastruktur

Energie, Infrastruktur und IKT

Laufzeit: 03/2012 – 12/2013

Fördermittelgeber: Ministerium für Verkehr und Infrastruktur Baden-Württemberg

Projektpartner:

- EnBW Energie Baden-Württemberg AG
- Land Baden-Württemberg
- Weitere Partner
 - Stadt Böblingen
 - Stadt Esslingen am Neckar
 - Stadt Sindelfingen
 - Stadt Gerlingen
 - Landeshauptstadt Stuttgart
 - car2go Deutschland GmbH

Ansprechpartner:

Lars Walch
EnBW AG
Durlacher Allee 93
76131 Karlsruhe
T: +49 721 63 14235
l.walch@enbw.com
Das Projekt Ladeinfrastruktur Stuttgart und Region arbeitet an einer Kernfrage der E-Mobilität: Wie kann Ladeinfrastruktur zukünftig wirtschaftlich betrieben werden?

Testen neuer Dienstleistungen rund um das Thema Ladeinfrastruktur:

Projektverlauf und Ergebnisse

Ausblick
Zum 1. Juli 2015 wurde darauf aufbauend mit Förderung durch das Ministerium für Verkehr und Infrastruktur des Landes Baden-Württemberg das Projekt LIS 2.0 gestartet. Hier werden die nächsten drei Jahre bis Mitte 2018 folgende Themenfelder erforscht und prototypisch umgesetzt:

- Technische und prozessuale Optimierungsmöglichkeiten für den Betrieb der bestehenden öffentlichen EnBW Ladeinfrastruktur in ganz Baden-Württemberg
- Identifikation und Beseitigung technischer Betriebs hemmnisse bzgl. der Ladestationen der ersten Generation
- Evaluation und prototypische Umsetzung kooperativer Betreibermodelle anhand der Stadtwerke-Partnerkonstellation aus dem Projekt CREMIE
- Konzeptforschung bzgl. Public-Private-Partnership-Modellen zur Skalierung der Ladeinfrastruktur
- Steigerung der Akzeptanz der öffentlichen Ladeinfrastruktur durch Konzepte zur Vermeidung von falschparkenden Verbrennungsfahrzeugen
- Konzepte für den Einsatz innovativer Anreizsysteme und mobilier Zugangsverfahren
- Forschung bzgl. ergänzender Wertschöpfungskonzepte/ Mehrwertdienste inklusive deren exemplarischer Pilotierung
- Vorbereitung des Zubaus von Gleichstrom-Schnellladestationen durch eine Bedarfsanalyse in Abstimmung mit dem Schnellladeprojekt SLAM und selektive Umsetzung an 3 Pilotstandorten

Ansprechpartner:
Lars Walch
EnBW Energie Baden-Württemberg AG
Pfisterstraße 1
76131 Karlsruhe
T: +49 721 63 14235
l.walch@enbw.com
Integriertes Flottenladen
Einsatz von Elektrofahrzeugen in Fahrzeugflotten

Projektbeschreibung
Im Projekt InFlott (Integriertes Flottenladen) arbeiten Experten aus Forschung, Wirtschaft und öffentlichem Sektor gemeinsam an einer Kernfrage der Elektromobilität: Wie können E-Fahrzeuge – trotz derzeit noch geringer Reichweite und Wirtschaftlichkeit – sinnvoll in Flotten eingesetzt werden und zur Energiewende beitragen?

Ziel des Projekts ist es zu zeigen, dass ein Einsatz von E-Fahrzeugen in Fahrzeugflotten heute schon möglich ist – klimafreundlich und mit hohem Nutzerkomfort.

Projektverlauf und Ergebnisse
In einem ersten Schritt wird dafür in einem Feldtest analysiert, wie viele E-Fahrzeuge in den Testfahrzeugflotten eingesetzt werden können. Mit Systemen, die auf die verschiedenen E-Fahrzeuge der Flotten angepasst sind, werden die Fahrzeugzustandsdaten erfasst und auf einer Datenplattform übertragen. Dort werden sie aufbereitet und an die Management-Software EcoGuru weitergeleitet. Parallel dazu wird eine Ladeinfrastruktur mit 50 Ladepunkten errichtet. Diese soll eine übersichtliche und barrierefreie Nutzung ermöglichen.

Die Daten über Fahrzeugbelegungen, Ladestationen und Energieversorgung werden an die Software EcoGuru übermittelt. Mit der Software wird eine integrierte Verwaltung der Ladevorgänge ermöglicht.

Die Daten über Fahrzeugbelegungen, Ladestationen und Energieversorgung werden an die Software EcoGuru übermittelt. Mit der Software wird ein optimiertes Lastmanagement ermöglicht, das den Flottennutzer optimal berücksichtigt und das Laden der E-Fahrzeuge intelligent gestaltet.

Die Ergebnisse des Lastmanagements werden auf simulatorische Weise ermittelt.

Die Daten über Fahrzeugbelegungen, Ladestationen und Energieversorgung werden an die Software EcoGuru übermittelt. Mit der Software wird ein optimiertes Lastmanagement ermöglicht, das den Flottennutzer optimal berücksichtigt und das Laden der E-Fahrzeuge intelligent gestaltet.

Die Ergebnisse des Lastmanagements werden auf simulatorische Weise ermittelt.

Die Daten über Fahrzeugbelegungen, Ladestationen und Energieversorgung werden an die Software EcoGuru übermittelt. Mit der Software wird ein optimiertes Lastmanagement ermöglicht, das den Flottennutzer optimal berücksichtigt und das Laden der E-Fahrzeuge intelligent gestaltet.

Die Ergebnisse des Lastmanagements werden auf simulatorische Weise ermittelt.

Halböffentliches Laden an Unternehmensstandorten

Projektbeschreibung

Projektverlauf und Ergebnisse

Das Verbundprojekt charge@work mit dem Konsortialführer Daimler AG und den Konsortialpartnern Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO und Universität Stuttgart – Institut für Arbeitswissenschaft und Technologiemanagement hat die folgenden Ergebnisse erzielt:

- Entwicklung und Betrachtung unterschiedlicher Nutzungsmodalitäten für Mitarbeiter
- Aufbau einer intelligenten Ladeinfrastruktur an fünf Standorten
- Implementierung eines Lade- und Lastmanagementverfahrens zur intelligenten Integration von Elektrofahrzeugen in das bestehende Energiesystem
- Integration eines transparenten Abrechnungskonzepts zur verursachungsgerechten Allokation der Stromkosten
- Entwicklung von simulationsbasierten Tools zur Auslegung von Ladeinfrastruktur und übergeordneten Energiesystemen mit ökologischer und ökonomischer Bewertung
- Entwicklung und Erprobung von Geschäftsmodellen anhand durchgeführter Nutzerakzeptanzstudien

Ausblick

Die Daimler AG konnte durch dieses Projekt eine breite Masse an Nutzern ansprechen und Elektromobilität erleben lassen. Über den Projektrahmen hinaus wurden bereits zahlreiche baugleiche Ladestationen in Betrieb genommen.

Das Fraunhofer IAO konnte mit dem Micro Smart Grid Demonstrator eine real genutzte Testumgebung für Lade- und Energieinfrastruktur in Verbindung mit intelligenten Lastmanagementsystemen schaffen.

Zukünftige Erweiterungen mit innovativen Technologien und Demonstratoren sind im Rahmen mehrerer Anschlusprojekte geplant.

Das IAT der Universität Stuttgart konnte Tools zur Planung, Auslegung und Bewertung von Energiesystemen mit Ladeinfrastruktur entwickeln. Sowohl die Weiterentwicklung als auch die praktische Anwendung wird in Folgeprojekten angestrebt.

Daimler Mitarbeiter strömen durch den Großraum Stuttgart
Audi NEoS – Kunden-Nutzungsverhalten von Elektrofahrzeugen im Stadtprofil Stuttgart und Stadt-Lieferservice

Projektbeschreibung

Das Projekt Audi NEoS soll greifbare und verwertbare Erfahrungsdaten im Umgang mit Elektrofahrzeugen liefern. Die Untersuchungsschwerpunkte liegen hierbei auf:

- der Nutzung von Elektrofahrzeugen im privaten und gewerblichen Einsatz
- der Nutzung unterschiedlicher Energiequellen (Kraftstoff und elektrische Energie)
- dem Ladeverhalten im privaten und öffentlichen Umfeld

Diese unter realen Bedingungen erfassten Daten sollen das Verständnis für E-Mobilität in der vorhandenen Infrastruktur darstellen. Aus den aufgezeigten Ergebnissen können zur einen die Handlungsfelder zur Weiterentwicklung der E-Mobilität für die AUDI AG als Fahrzeughersteller zum anderen die Handlungsfelder für die Entwicklung der E-Mobilität in der Infrastruktur getroffen werden.

Das Projekt wurde in zwei Projektphasen aufgeteilt:

Projektphase 1

Im ersten Schritt wird den Kunden ein konventionelles Fahrzeug zur Verfügung gestellt. Hierbei werden, als Ausgangsbasis, die Fahr- und Nutzungsdaten erfasst.

Im zweiten Schritt wird den Kunden ein Elektrofahrzeug übergeben. Über Messtechnik wird neben den Fahr- und Nutzungsdaten auch das Ladeverhalten an festen und öffentlichen Ladesäulen erfasst und bewertet.

Die aktive Fahrphase des ersten Projektheits wurde im Mai 2014 beendet.

Projektphase 2

Ausblick

Start der Flotte am Flughafen Stuttgart im Juni 2013

Laufzeit: 11/2012 – 06/2016

Fördermittelgeber: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Projektpartner:

Projektpartner in der ersten Projektphase: EnBW AG – Vertriebs GmbH

Start der Flotte am Flughafen München im April 2015

Laufzeit: 11/2012 – 06/2016

Fördermittelgeber: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Projektpartner:

Projektpartner in der ersten Projektphase: EnBW AG – Vertriebs GmbH

Ansprechpartner:

Katja Giss
AUDI AG
Ettinger Str.
85045 Ingolstadt
T. +49 841 8944108
katja.giss@audi.de
Projektbeschreibung

Projektverlauf und Ergebnisse

Blick in die Zukunft
Neben der gewonnenen Erkenntnissen aus Dauerlauferprobung und Kundenakzeptanzstudie sind die Planungen für die Zukunft von Daimler AG staubreich. Die Daimler AG sieht gerade den Plug-In Hybrid als die zentrale Antriebstechnologie bis 2040. Bis 2017 wird das Unternehmen insgesamt 17 Plug-In Hybrid-Modelle am Markt haben. Dazu kommen rein elektrische Fahrzeuge, wie etwa die vierte Generation des smart electric drive.
Panamera Plug-In Hybrid
Making electric mobility a reality

Übergabe der Fahrzeuge an die Kooperationspartner am 9. September 2013

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgesehen und durch das Karlsruher Institut für Technologie ausgewertet.

Projektverlauf und Ergebnisse

Auswertung der erfassten technischen Daten der Nutzerprofile. Insgesamt haben die Datenlogger 681,0 GB Daten bei einer Gesamtkilometerleistung von 173,087 km aufgezeichnet. (Erhebungsstand: 30.06.2015)

Ausblick

Aus den erhobenen Daten wird der Minimaldatensatz generiert und dem Zentralen Datenmonitoring (ZDM) zur Verfügung gestellt. Des Weiteren werden die Daten intern durch die Fachbereiche ausgewertet, um die gesammelten Erfahrungen in die nächste Generation von Plug-In Hybrid Fahrzeugen eindießen zu lassen.

Nacht Projektende ist geplant, die Fahrzeuge für interne Test- und Schulungszwecke, z. B. in der Berufsausbildung, weiter zu verwenden.

Porsche Panamera S E-Hybrid

Laufzeit: 09/2013 – 12/2015
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:
Dr. Ing. h.c. F. Porsche AG • Karlsruher Institut für Technologie
Weitere Kooperationspartner: Der Europäische Hof, Heidelberg • Flughafen Stuttgart / Restaurant Top Air • Funkenhof, Leipzig • Hotel Kiva, Konstanz • Maritim Hotel & Internationales Congress Center, Dresden • Schloss Eckberg, Dresden • Steinberger Graf Zeppelin, Stuttgart • Steinberger Grandhotel Handelskonz, Leipzig • The Westin Bellevue, Dresden • The Westin, Leipzig • Villa Hammerschmiede, Pfinztal

Ansprechpartner:
Fabian Bruckelt
Dr. Ing. h.c. F. Porsche AG
Porschestraße 911
71287 Weissach
T. +49 711 911 89059
fabian.bruckelt@porsche.de

Übergabe der Fahrzeuge an die Kooperationspartner am 9. September 2013

Projektbeschreibung

Projektverlauf und Ergebnisse

Für das Projekt Porsche Panamera Plug-In Hybrid wurden Arbeitspakete definiert. Nachfolgend werden die wesentlichen Meilensteine aufgezählt und die Ergebnisse der Projektarbeit aufgeführt.

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Definition der Anforderungen an die Fahrzeug- und Instandhaltung der Fahrzeuge. Die zwölf 0-Serienfahrzeuge werden durchgehend von Porsche mit relevanten Updates versorgt.

Projektverlauf und Ergebnisse

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Projektverlauf und Ergebnisse

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Projektverlauf und Ergebnisse

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Projektverlauf und Ergebnisse

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Projektverlauf und Ergebnisse

Definition technischer Konzepte und Ziele. Die Aufzeichnung der Daten erfolgt über Datenlogger, die im Kofferraum der Fahrzeuge verbaut sind. Die Speicherkartens werden von der Porsche AG ausgelesen und durch das Karlsruher Institut für Technologie ausgewertet.

Elektromobilität erleben!
Der eCube bietet interessierten Bürgerinnen und Bürgern die Möglichkeit, sich auf spielerische und sympathische Art und Weise umfassend über die Thematik Elektromobilität zu informieren.

Projektbeschreibung
Der eCube ist ein etwa 60 Quadratmeter großer, architektonisch ansprechender, begehbarer Ausstellungs-Würfel. Seine Aufgabe ist es, Bürgerinnen und Bürger auf unterhaltsame Weise umfassend über das Themenfeld Elektromobilität zu informieren. Er informiert aber nicht nur zum Thema Elektromobilität allgemein, sondern auch über das LivingLab BW mobil mit seinen Inhalten/Projekten.

Die zentralen Ziele des eCube:
- Das Thema Elektromobilität zahlreichen Menschen realitätsnah näher zu bringen
- Über die Projekte des LivingLab BW mobil mit seinen Inhalten/Projekten
- Die Chancen, aber auch Grenzen, der Elektromobilität realitätsnah zu vermitteln
- Verbesserung der Technologieakzeptanz
- Die Positionierung Baden-Württembergs als Hot Spot der Elektromobilität
- Das positive Bild des Standorts Baden-Württemberg als einer der innovativsten Standorte Europas weiter festigen
- Detaillierte Informationen vermitteln
- Begeisterung wecken

Projektverlauf und Ergebnisse
Seinen ersten öffentlichen Auftritt hatte der eCube beim Bürgerfest zum Tag der deutschen Einheit am 02./03. Oktober 2013. Dieser Auftritt diente auch als Probabetrieb, um aus den hierbei gemachten Erfahrungen noch möglichen Anpassungsbedarf zu identifizieren.

Im Jahr 2014 wurde der eCube auf der i-Mobility Messe Stuttgart ausgestellt (10.04. bis 13.04.2014) und auf der Landesgartenschau Schwäbisch Gmünd (30.04. bis 12.10.2014) auf beiden Veranstaltungen wurde der eCube von den Besuchern sehr positiv und interessiert aufgenommen, wobei auf der i-Mobility Messe der Anteil an Fachpublikum spürbar höher war als auf der Landesgartenschau. Insgesamt hatte der eCube somit 172 Betriebstage mit geschatzen 500.000 Besuchern.

Das Projekt wurde im Oktober 2014 abgeschlossen.

Online Schaufenster Elektromobilität
Mitreden – Mitmachen – Mitgestalten

Bürger nutzen die App „elektromobil-dabei“

Bürgerbeteiligung und Elektromobilität, das passt zusammen. Im Online Schaufenster Elektromobilität gibt es den Zugang zur Welt der Elektromobilität mit Informationen, neusten Meldungen und Möglichkeiten des spielerischen Lernens.

Mitreden auf der Kommunikationsplattform
Mitmachen beim Elektr-O-Mat
Mitgestalten beim elektromobilen Wandel

Projektbeschreibung

Projektverlauf und Ergebnisse
Wichtigste Meilensteine des FuE-Vorhabens waren die Konzeption, Entwicklung und der Live-Betrieb von ■ der zentralen Webplattform www.livinglab-bwe.de
■ der mobilen App „elektromobil-dabei“
■ dem großen Beteiligungsspiel „elektr-o-mat.de“
■ dem Social-Media Twitter-Kanal https://twitter.com/emobildabei

Mit dem Elektr-O-Mat hat das Projekt neue Wege beschritten: Nicht als weitere Online-Umfrage sondern als innovatives Beteiligungsspiel aufgesetzt, gibt es den Menschen Antwort auf die Frage: Welcher (Elektro-)Mobilitätstyp bin ich? Mehr als 2.000 Menschen haben bislang Elektr-O-Mat gespielt, sie liefern in ihrer Schwallintelligenz fortwährend wissenschaftliche Erkenntnisse, was Menschen über Elektroautos, Hybridautos, Pedelecs, E-Bikes, Sharing-Angebote und ÖPNV denken und für sich erwarten.

Der Twitter-Kanal elektromobil-dabei konnte innerhalb von wenigen Wochen eine dreistellige, täglich wachsende Followerrzahl auf sich vereinigen und sich als eine der besten Nachrichten- und Vernetzungsquellen im Internet zu Elektromobilität und Bürgerbeteiligung etablieren.

Ausblick

Ansprechpartner:
Norbert Fröschle
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart
T: +49 711 970 2237
norbert.froeschle@iao.fraunhofer.de
Projektbeschreibung

Bürgerbusse stellen öffentliche Mobilität auf ehrenamtlicher Basis bereit, die den konventionellen ÖPNV partnerschaftlich ergänzt und eine feinräumige Erschließung von Gebieten mit engen Wohnstraßen erlaubt, die mit normalspurigen Linienbussen nicht angefahren werden können. Insbesondere in kleineren Kommunen kann durch einen Bürgerbus die Teilhabe vor allem älterer und mobilitätseingeschränkter Bürger am gesellschaftlichen Leben gesichert und die Identifikation der Bürger mit ihrem Wohnort gestärkt werden.

Umsetzung eines Wikis erhoben und analysiert, um bei der Softwareauswahl die Wünsche der diversen Stakeholder zu beachten. Dabei wurden technische Restriktionen für die Anbindung an das Online-Schaufenster und Ansätze für ein Rechtekonzept berücksichtigt.

Fokus lag darüber hinaus auf der Möglichkeit des Exports einzelner Inhalte für die Erstellung eines gedruckten Leitfadens sowie auf der Bedienbarkeit für die Zielgruppe. Die Entscheidung bei der Software fiel auf MediaWiki, das auch für das bekannteste Wiki – Wikipedia – eingesetzt wird. Hier zeigten sich aufgrund der weiten Verbreitung Vorteile durch eine intuitive Nutzbarkeit wegen des bekannten Look & Feel sowie für die Administration.

In einer Testumgebung wurden das Wiki und Maßnahmen zur Qualitätssicherung erprobt.

Die Wissensbasis rund um das Thema Bürgerbus für interessierte Bürgerinnen und Bürger
Großes Interesse am Bürgerbusgedanken: über 20.000 Zugriffe im Zeitraum November 2014 bis Juli 2015
Exklusive Informationen für Elektrofahrzeuge

die Großes und Bauart

Anspruchspartner:
Prof. Dr. Georg Herzwurm
Universität Stuttgart, Betriebswirtschaftliches Institut, Abt. Wirtschaftsinformatik II
Keplerstr. 17
70174 Stuttgart
T +49 711 685 82385
herzwurm@wius.bwi.uni-stuttgart.de

Laufzeit: 11/2012 – 12/2015
Auftraggeber: e-mobil BW GmbH – Landesagentur für Elektromobilität und Brennstoffzellentechnologie
Projektpartner: Universität Stuttgart, Betriebswirtschaftliches Institut, Abt. Wirtschaftsinformatik II

Großes Interesse am Bürgerbusgedanken: über 20.000 Zugriffe im Zeitraum November 2014 bis Juli 2015
Exklusive Informationen für Elektrofahrzeuge

Kommunikation und Partizipation

DIE Wissensbasis rund um das Thema Bürgerbus für interessierte Bürgerinnen und Bürger
Großes Interesse am Bürgerbusgedanken: über 20.000 Zugriffe im Zeitraum November 2014 bis Juli 2015
Exklusive Informationen für Elektrofahrzeuge
e-Bürgerbus
Verstetigung eines nachhaltigen Mobilitätskonzepts in der Region Stuttgart

Projektbeschreibung

Projektverlauf und Ergebnisse
In einem ersten Schritt wurde der Ist-Zustand der bestehenden Bürgerbusverkehre mit konventionellen Dieselfahrzeugen in den vier Anwendungskommunen untersucht. Trotz der unterschiedlichen topografischen und verkehrsbezogenen Rahmenbedingungen und der durch die Batteriekapazität begrenzten Reichweite kann das bestehende Bedienungsangebot in Form von Linienführung und Fahrplan auch mit einem e-Fahrzeug im Rahmen des Testbetriebs weitgehend unverändert bleiben.

Parallel wurde ein geeignetes e-Fahrzeug beschafft. Dabei war die wesentliche Herausforderung, in einem für elektrisch betriebene Fahrzeuge dieser Größenordnung sehr begrenzten Markt Angebote zu erhalten, welche neben den gesetzlichen Vorgaben auch die der Konzessionsgeber an ein Bürgerbusfahrzeug erfüllen und darüber hinaus die Anforderungen der Nutzer (Fahrer und Fahrgäste) befriedigen. Der Einsatz ehrenamtlicher Fahrer mit Führerscheinklasse B erfordert z. B. eine Restriktion des maximalen Gesamtgewichts auf 3,5 Tonnen, um gleichzeitig hohe Batteriekapazitäten zu gewährleisten.

Ausblick

Laufzeit: 07/2014 – 09/2016
Fördermittelgeber: Ministerium für Verkehr und Infrastruktur Baden-Württemberg
Projektpartner:
- VWI Verkehrswissenschaftliches Institut Stuttgart GmbH
- Universität Stuttgart, Betriebswirtschaftliches Institut, Abt. Wirtschaftsinformatik
- Universität Stuttgart, Institut für Eisenbahn- und Verkehrsweisen
- Geschäftsstelle NAMOREG (Nachhaltige mobile Region Stuttgart)
- Nahverkehrsgesellschaft Baden-Württemberg mbH
- Anwendungskommunen: Ebersbach (Fils), Salach, Uhingen, Wendlingen (Neckar)

Ansprechpartner:
Dr. Fabian Hantsch
Universität Stuttgart, Institut für Eisenbahn- und Verkehrswesen
Pfaffenwaldring 7
70569 Stuttgart
T: +49 711 685 66360
fabian.hantsch@ievvwi.uni-stuttgart.de
Projektbeschreibung

Mit diesen und weiteren Fragestellungen tourte das Mobile Schulungszentrum Elektromobilität (MSE) mit seiner multimedialen Präsentationssoftware und seiner Experimentierwerkstatt durch Baden-Württemberg und war als ausgewähltes Bildungsprojekt auf der Hannover-Messe und zur nationalen Bildungskonferenz in Berlin.

Um Elektromobilität selbst „erfahren“ zu können, standen Elektrofahrerläufer und Elektro-GoKarts zur Verfügung. Ein Besuch des MSE umfasste etwa 2,5–3 Stunden.

Projektverlauf und Ergebnisse

In der Experimentierwelt führten die Schülerinnen und Schüler in Kleingruppen diverse Versuche durch. Kann ein Kleinfahrzeug nur mit Wasser fahren? Wie stark und wie lange muss ein Handkurbelgenerator gedreht werden, um ein handelsübliches Smartphone zum Leben zu erwecken? Können wir die Auswirkungen des „berüchtigten“ Treibhauseffektes im Modellversuch erkennen? Welche beruflichen Zukunftschancen eröffnen sich im Bereich der Elektromobilität und den angrenzenden Technologien?

Ausblick

Das Mobile Schulungszentrum wird im Jahr 2016 auf der Landesgartenschau in Öhringen präsent sein und dort einer breiten Öffentlichkeit zugänglich gemacht.

Darüber hinaus werden in diesem Rahmen Schulklassen die Möglichkeit haben, gezielt Workshops zu besuchen.

Ansprechpartner:
Michael Nanz
Technische Akademie Schwäbisch Gmünd
Lorcher Str. 119
73529 Schwäbisch Gmünd
T: +49 7171 31 4407
m.nanz@technische-akademie.de
Projektbeschreibung

Projektverlauf und Ergebnisse

In einem dritten Schritt wurden die Konzepte in der Praxis umgesetzt. Nach der Einführung im Juni 2013 war die teilmobile Schauwerkstatt bei den verschiedenen Projektpartnern und Zielgruppen zu Gast. Mit den eigens für die Schauwerkstatt konzipierten Lehrgängen, Seminaren und Workshops sowie einigen Sonderveranstaltungen (Tag der offenen Tür, Symposium Elektromobilität, Konferenzen etc.) konnten insgesamt knapp 100 Veranstaltungen mit rund 11.900 Teilnehmerinnen und Teilnehmern realisiert werden.

Ausblick

Schulungskonzepte, Veranstaltungsformate und Schauwerkstatt werden von den Projektpartnern im Rahmen ihrer eigenen Angebote über die Projektlaufzeit hinaus genutzt und weiterentwickelt werden.
e-Fahrschule
Elektrofahrzeuge brauchen Elektrofahrer

Projektbeschreibung

Folgende Fragestellungen und Themen hat das Projekt e-Fahrschule bearbeitet:

- Aus- und Fortbildung der Fahrlehrer zur Elektromobilität (Praxis & Theorie)
- Konzeptionierung, Entwicklung und Erstellung von Schulungsmaterialien
- Aufbau einer e-Fahrzeuflotte für den Betrieb der e-Fahrschule
- Einführung der Elektromobilität über die Aufnahme offizieller e-Fahrzeugbetriebe
- Gewinnung von Partnerfahrschulen
- Einführung der Elektromobilität in Fahrschulen (über Fahrlehrer)

Ziel aller Maßnahmen war und ist es, die Elektrofahrzeuge in die Ausbildung der Fahrlehrer und Fahrschüler zu integrieren, Erfahrungen zu sammeln und weitere Fahrschulen für dieses Thema zu gewinnen.

Projektverlauf und Ergebnisse

Im Rahmen des Projektes wurden Schulungsunterlagen für die Ausbildung der Fahrlehrer erarbeitet, angepasst und erprobt. Als nächste Stufe wurden die Schulungsunterlagen für die Anwendung bei den Fahrlehrern entwickelt und umgesetzt. Über den Fuhrpark können die Fahrzeuge bedarfsgerecht an die Partnerfahrschulen vermietet werden.

Folgende Effekte konnten bis heute beobachtet werden:
1. Interesse an dem e-Fahrschulkonzept eines namhaften Automobilherstellers
2. Interesse an der e-Fahrschule seitens der Landespolitik
3. Fahrschüler berichten über die feine Dosierbarkeit beim Beschleunigen und Bremsen der Elektrofahrzeuge
4. Fahrschüler erlernen leichter und sicherer die Teilnahme am Straßenverkehr

Ausblick

Sowohl die Schulungskonzepte als auch die Elektrofahrzeuge werden weiterhin verwendet.

Über die erarbeiteten Inhalte zur Elektromobilität konnten wichtige Impulse für die Einführung der Elektromobilität in die Fahrlehrer-Aus- und Weiterbildung erzielt werden. Das zugrundeliegende Ausbildungskonzept inklusive der Erfahrungen aus dem Projekt steht weiteren Akteuren am Markt zur Verfügung. Die erarbeiteten Schulungsunterlagen werden im Unternehmen eingesetzt.

Die e-Fahrschule zu Gast in Ludwigsburg

Untersuchung und Begleitung der Fahrschüler durch das Projekt
Einbindung der politischen Akteure über den Regelkreis der Fahrschule
Erste Integration offizieller e-Prüfungsfragen in baden-württembergischer Fahrschulausbildung

Laufzeit: 03/2013 – 06/2016
Fördermittelgeber: Bundesministerium für Verkehr und digitale Infrastruktur
Projektpartner:
- Weiterbildungszentrum für innovative Energetikchnologien der Handwerkskammer Ulm (WBZU)
- vpa Verkehrsfachschule GmbH

Ansprechpartner:
Christian Huck
WBZU für innovative Energietechnologien der Handwerkskammer Ulm
Helmholtzstraße 6
89081 Ulm
T.: +49 172 7650007
christian.huck@wbzu.de

Die e-Fahrschule zu Gast in Ludwigsburg

Praktische e-Fahrstunden

12 e-Fahrzeuge, 495 e-Fahrstunden
42 Veranstaltungen
1.488 erreichte Personen
770 geschulte Fahrerinnen und Fahrer
88 Fahrerinnen und Fahrer
10–30% Emissionspotenzial an Fahrschulen
Hohe Akzeptanz bei Fahrlehrern und Fahrschulen
Erste Integration offizieller e-Prüfungsfragen in baden-württembergischer Fahrschulausbildung

12 e-Fahrzeuge, 495 e-Fahrstunden
42 Veranstaltungen
1.488 erreichte Personen
770 geschulte Fahrerinnen und Fahrer
88 Fahrerinnen und Fahrer
10–30% Emissionspotenzial an Fahrschulen
Hohe Akzeptanz bei Fahrlehrern und Fahrschulen
Erste Integration offizieller e-Prüfungsfragen in baden-württembergischer Fahrschulausbildung
Geschäftsmodelle und IKT-basierte Dienstleistungen für Elektromobilität
Marktanalysen und intelligente Netzintegration

Die Bewertung von Anreizstrukturen für neue Geschäftsmodelle sowie die komfortable Einbindung der Nutzer über entsprechende Schnittstellen erleichtern die Netzintegration der Elektrofahrzeuge im Alltag.

Entscheidungsunterstützungssystem für Elektrofahrzeugnutzer im Anwendungsszenario Parkhaus

Projektbeschreibung
Im Projekt Geschäftsmodelle und IKT-basierte Dienstleistungen für Elektromobilität untersuchten das FZI Forschungszentrum Informatik und das Fraunhofer IAO neue Geschäftsmodelle und Dienstleistungen für einen nachhaltigen Einsatz der Elektromobilität. Für den langfristigen Erfolg der Elektromobilität über die Marktvorbereitungs- und Markthochlaufphase hinaus sind diese beiden Themen von zentraler Bedeutung. Im Rahmen des Projektes wurden Märkte analysiert, die eine ähnliche Struktur wie der Markt für Elektromobilität aufweisen, um vorhandene Erfahrungen für die Verbreitung der Elektromobilität nutzen zu können. Auf Basis dieser Ergebnisse wurde eine Methode entwickelt, die es Unternehmen ermöglicht, ihre Position im Wettbewerb zu analysieren und durch Marktransparenz neue Geschäftsmodelle zu schaffen.

Projektverlauf und Ergebnisse

Ausblick
Mit den beiden Forschungsfeldern leistet das Projekt einen wichtigen Beitrag zur fundierten Bewertung aktueller Marktkonzepte sowie zur aktiven Integration von Elektrofahrzeugen in das Energiesystem von morgen. Um den Transfer der Projektinhalte zu ermöglichen, ist eine Kurzzusammenfassung der wichtigsten Ergebnisse auf den Webseiten der beteiligten Forschungseinrichtungen verfügbar.

Projektübergreifende Forschung

Laufzeit: 01/2013 – 04/2014
Im Auftrag des Ministeriums für Finanzen und Wirtschaft Baden-Württemberg mit Mitteln der Baden-Württemberg Stiftung
Projektmitarbeit:
FZI Forschungszentrum Informatik • Fraunhofer IAO

Ansprachpartner:
Sebastian Gottwald
FZI Forschungszentrum Informatik
Friedrich-Engels-Platz 1
76131 Karlsruhe
T. +49 721 9654 552
gottwald@fzi.de

Download der Kurzzusammenfassung
Scannen Sie hierzu einfach mit Ihrem Smartphone den QR-Code ab.
Navigation zum Bericht über > WIR FÜR SIE > Mediacenter > Veröffentlichungen

Entscheidungsunterstützungssystem für Elektrofahrzeugnutzer im Anwendungsszenario Parkhaus
Strategien zum Marktausbau der Elektromobilität in BW
Elektromobilität im LivingLab BW mobil

Projektbeschreibung
Im Mittelpunkt des Projektes stand die Durchführung einer repräsentativen und marktorientierten Studie, in der Verbreitungsmöglichkeiten für Elektromobilität in Baden-Württemberg mit Fokus auf potenzielle Nutzergruppen untersucht wurden. Dazu wurden vorhandene Mobilitätscharakteristika aktueller Verkehrsteilnehmer/-innen über verschiedene Mobilitätsmodi hinweg gemeinsam mit soziodemographischen und psychologischen Merkmalen analysiert. Darauf aufbauend wurden mögliche Marktzugänge speziell für die identifizierten Gruppen entwickelt.

Projektverlauf und Ergebnisse
Es zeigten sich für jeden der drei Zwecke jeweils drei typische Nutzungsmuster der Verkehrsmittelwahl. Diese drei Typen waren innerhalb aller drei Zwecke ähnlich, einzelne Personen wurden jedoch je nach Zweck unterschiedlichen Typen zugeordnet, d. h. die Verkehrsmittelwahl ist abhängig vom Zweck. Es zeigt sich unabhängig vom Zweck, dass das größte Potenzial für die Nutzung von Elektroautos von den Personen gesehen wird, die hauptsächlich auf ein Auto bei ihrer Fortbewegung zurückgreifen oder verschiedene Verkehrsmittel miteinander kombinieren.

Zum anderen wurden die Befragten in Gruppen unterteilt nach ihrem Interesse an Elektroautos. Es zeigt sich, dass die Gruppe der aktuellen Nutzer sowie derjenigen, die in naher Zukunft ein Elektrofahrzeug kaufen wollen, noch sehr klein ist. Der Faktor, der die Kaufwahrscheinlichkeit am stärksten beeinflusst, ist die Kompatibilität im Alltag. Kompatibilität umfasst zum einen die Passung mit Mobilitätsbedürfnissen im Alltag, zum anderen aber auch, inwieweit ein Elektroauto zur Persönlichkeit passt und zeigt, was einem wichtig ist.

Ausblick
In Zukunft können die erhobenen Daten dazu dienen, noch differenzierter die Unterschiede zwischen Personen gruppen mit unterschiedlichem Interesse an Elektromobilität zu analysieren und auch den Zusammenhang mit anderen alternativen Mobilitätsformen wie Carsharing zu betrachten.

Handlungsempfehlungen zur Verbreitung von Elektromobilität im Marktsegment „early adopters“
- Repräsentative Mobilitätsstudie für Baden-Württemberg mit 2.237 Studienteilnehmern
- Erfahrung und Wissen sind wesentliche Einflussgrößen auf die Kaufabentscheidung von Elektroautos
- Menschen, die auf ihren Wegen bereits Verkehrsmittel kombinieren, zeigen das größte Potenzial zur Nutzung von Elektroautos

Diagramm eines Markthochlaufs für den Besitz von Elektrofahrzeugen

Laufzeit: 11/2012 – 09/2015
Im Auftrag des Ministeriums für Finanzen und Wirtschaft Baden-Württemberg mit Mitteln der Baden-Württemberg Stiftung

Projektteams:
- Fraunhofer-Institut für Solare Energiesysteme ISE
- Fraunhofer-Institut für System- und Innovationsforschung ISI
- InnOZ - Innovationszentrum für Mobilität und gesellschaftlichen Wandel GmbH

Ansprechpartner:
Sebastian Gölz
Fraunhofer-Institut für Solare Energiesysteme ISE
Heidenhofstraße 2
79110 Freiburg
T: +49 761 4588 5228
sebastian.goelz@ise.fraunhofer.de
Urbane Mobilitätskomfort – Region Stuttgart
Anreizsysteme für nachhaltige Mobilität von morgen

Projektbeschreibung

Erhebung von Informationen zum urbanen Mobilitätskomfort

- Den größten Einfluss auf den urbanen Mobilitätskomfort bei intermodalen Reiseketten haben die Faktoren Zuverlässigkeit, dynamische Fahrgastinformationen und Privatsphäre
- Die Integration unterschiedlicher Smartphone-interner und -externer Sensoren ermöglicht die Verortung von Diskomfort-Höhepunkten im intermodalen Mobilitätsystem und macht gezielte Handlungsempfehlungen möglich.

Projektverlauf und Ergebnisse

Nach einer ausführlichen Recherche zum Mobilitätssystem der Region Stuttgart und wo lassen sich diese verorten?

- Wie lässt sich Diskomfort in einem urbanen Mobilitätssystem bewerten?
- Lassen sich Sensordaten zur Bestimmung des urbanen Mobilitätskomforts nutzen?
- Welche Optionen bietet eine Smartphone-App für die Erhebung von Informationen zum urbanen Mobilitätskomfort?

Projektverlauf und Ergebnisse

- Wie lässt sich ein sicheres und skalierbares App-Server-System gestalten, das Daten aus der App empfängt, speichert und eine Auswertung ermöglicht?
- Welche Diskomfortfaktoren bestehen im Mobilitätssystem der Region Stuttgart und wo lassen sich diese verorten?

Ergebnisse aus der ersten Projektphase

Ausblick

Weitere Ergebnisse des Projekts sind:

- Eine personalisierte Routenplanung, die bspw. die vier Mobilitätskomfort-Typen Eilige, Sportliche, Anspruchsvolle und Relaxer berücksichtigt, bietet erhebliche Chancen zur Verbesserung des urbanen Mobilitätskomforts.
- Ein erfolgreiches integriertes Mobilitätssystem spiegelt sich in einer nutzerfreundlichen Informationsplattform wider, die sämtliche Mobilitätsangebote umfasst.

Laufzeit: 10/2012 – 02/2015

Im Auftrag des Ministeriums für Finanzen und Wirtschaft Baden-Württemberg mit Mitteln der Baden-Württemberg Stiftung

Projektpartner:

- Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
- Dialogik gGmbH – Gemeinnützige Gesellschaft für Kommunikations- und Kooperationsforschung mbH
- Hochschule Esslingen – University of Applied Sciences

Ansprechpartner:

Steffen Braun
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Nobelstraße 12
70569 Stuttgart
T: +49 711 970 2022
Steffen.Braun@iao.fraunhofer.de
650.000 Elektro- und Brennstoffzellenfahrzeuge in Baden-Württemberg in 2030...
- bieten Potenzial zur Lastverschiebung
- haben kaum negative Auswirkungen auf unsere Stromnetze
- helfen bei der Integration erneuerbarer Energien – ermöglichen, bei Ausbau der erneuerbaren Energien, eine ökologischere Mobilität
- sind ein wichtiger Beitrag zur Energiewende

Energie und Umwelt

Markthochlauf und Effekte durch Elektromobilität bis 2030 in Baden-Württemberg

Schematische Darstellung der erneuerbaren Energieversorgung für batterieelektrische Fahrzeuge

Projektbeschreibung

Welche Marktanteile sind mittelfristig für die Elektromobilität in Baden-Württemberg zu erwarten, welche Auswirkungen ergeben sich auf die Versorgungsinfrastruktur und welche Umwelteffekte entstehen?

Mit steigender Anzahl an Elektrofahrzeugen wächst der Einfluss auf das Energiesystem und die Umwelt, denn Elektromobilität kann – gesehen mit Strom aus erneuerbaren Energien – Mehrwerte sowohl für das Energiesystem als auch für die Umwelt bieten.

Projektverlauf und Ergebnisse

Im ersten Jahr des Projekts wurden Szenarien erarbeitet, die mögliche Entwicklungen im Energie- und Mobilitätssektor darstellen. Sie bildeten die Basis für die daran anschließenden Hochrechnungen zur Marktdurchdringung mit Elektrofahrzeugen bis zum Jahr 2030. Die Ergebnisse zu Speicherpotenzialen, zukünftigen Belastungen von Stromnetzen und Umwelteffekten wurden aufbauend auf diesem Trendszenario erarbeitet, in einer umfangreichen Studie zusammengetragen und werden im Folgenden kurz erläutert.

Speicherpotenziale: Durch Preissignale kann die Stromnachfrage der Elektrofahrzeuge in Lasttäler verschoben werden. Im Vergleich zum ungesteuerten Laden (nach dem letzten Weg) ist somit eine bessere Aufnahme erneuerbarer und überschüssiger Strommengen möglich. Gegenüber zentralen, stationären Stromspeichern, die nicht rentabel sind, bieten Elektrofahrzeuge somit die Option, einen größeren Teil der Überschussmengen zu speichern und zu nutzen.

Markthochlauf und Effekte durch Elektromobilität bis 2030 in Baden-Württemberg

E-Mobil: Energie und Umwelt Baden-Württemberg

Projektübergreifende Forschung
Weitere Projekte
Projektbeschreibung
Das Projekt EMiS holt das Thema Elektromobilität in mittelgroße Städte mit dem Ziel, den Beitrag der Elektromobilität zu den Stadtentwicklungs- und Klimaschutzzielen zu evaluieren und zu integrieren. Mit EMiS konnten wichtige Impulse gesetzt werden:
- Elektromobilität in Göppingen wurde in kommunale Planungsinstrumente, als Teil des Stadtentwicklungs-konzepts 2030 und des Klimaschutzkonzepts integriert.
- In Schwäbisch Gmünd ist sie Bestandteil des Klimaschutzkonzepts und des Strategieprozesses Gmünd 2020.
- Über zehn E-Autos sind im kommunalen und gewerblichen Fuhrpark der Projektpartner im Einsatz.
- Die Firmen ETG im LK Göppingen und GOA im Ostalbkreis haben Abfallfahrzeuge mit Hybridantrieb erfolgreich in den Normalbetrieb integriert und begeistern Mitarbeiter und Bürger.
- Eine Toolbox (Werkzeugkasten) mit Tipps und Hinweisen zur Einführung der Elektromobilität in Mittelstädten wurde entwickelt.
- Die Firmen ETG im LK Göppingen und GOA im Ostalbkreis haben Abfallfahrzeuge mit Hybridantrieb erfolgreich in den Normalbetrieb integriert und begeistern Mitarbeiter und Bürger.
- Eine Toolbox (Werkzeugkasten) mit Tipps und Hinweisen zur Einführung der Elektromobilität in Mittelstädten wurde entwickelt.

emma – e-mobil mit anschluss

Projektbeschreibung

Ein Elektrofahrzeug im Linienbetrieb nutzen, per App ein Elektroauto reservieren und wie einen Mietwagen fahren, an einer Ladesäule Strom tanken oder die nächste Route planen – all das macht emma möglich und schafft damit Angebote, die dem Bürgern einen echten Mehrwert bieten.
Elektromobilisiert.de
Fraunhofer IAO elektromobilisiert Fahrzeugflotten

Projektbeschreibung

Um die Elektrifizierung von Fuhrparkflotten zu analysieren, wird eine fünfstufige Vorgehensweise gewählt, welche bei bereits mehr als zwölf baden-württembergischen Unternehmen und staatlichen Behörden durchgeführt wurde. Aus dem Projekt Elektromobilisiert.de lässt sich ableiten, dass Fuhrparkflotten bereits heute unter technischen und ökonomischen Gesichtspunkten elektrifiziert werden können und diese einen Beitrag zu Kosteneinsparungen im Unternehmen zu leisten imstande sind. Da kein Fuhrpark dem anderen gleicht, bedarf es hierfür maßgeschneiderter, d. h. individueller Lösungen, um sicherzustellen, dass der Wechsel zu einer elektrifizierten Flotte wirtschaftlich und technisch darstellbar ist.

Elektromobilisiert.de wurde bei zwölf Partnern in Baden-Württemberg durchgeführt
Mehr als 45.000 km elektrisch gefahrene Kilometer
Mehr als 290 Personen kamen bei rund 1.200 Einzelfahrten als Erstnutzer mit Elektrofahrzeugen in Kontakt

EleNa
Plug-In Hybrid Electric Vehicle

Projektbeschreibung

www.elena-phev.com
Projektbeschreibung

„Intelligente Verkehrsmodelle mit entsprechenden Reichweiteneinflüssen, innovative Abrechnungssysteme, ausgeklügelte Flottenmanagementkonzepte und ein dezentrales Energie- und Lademanagement sind nötig, um das Potenzial der Elektromobilität auszuschöpfen,” so erklärte Lars Walch von der EnBW AG den Grundgedanken des Projekts.

Weitere Informationen unter: www.izeus.de

Über Genius

car2go
Emissionsfrei durch Stuttgart und die Region

Projektbeschreibung

Weitere Informationen unter: www.car2go.com/de/stuttgart/

Im November 2012 brachte car2go Stuttgart Deutschlands größte rein elektrische E-Fahrzeug-Flotte auf die Straße.
Beteiligte Projektpartner
Eine Auswahl

Lessons Learned
Gelebte Praxis im lebendigen Labor

34 geförderte Projekte, mehr als 100 beteiligte Partner, 2.000 Elektrofahrzeuge auf den Straßen in der Region Stuttgart und der Stadt Karlsruhe, 1.000 Ladepunkte – das sind Zahlen, die das baden-württembergische Schaufenster Elektromobilität LivingLab BW mobil und die erfolgreiche Arbeit seiner Projekte beschreiben.

Elektromobilität macht Sinn – besonders im System

Innovations(t)raums 2015 präsentiert wurden.

Während des Innovations(t)raums 2015 präsentiert wurden.

Wir haben viele Projekte im Bereich Elektromobilität entwickelt, um die Mobilität der Bewohner zu verbessern und die Umweltbelastung zu reduzieren. Die Projekte wurden in Zusammenarbeit mit anderen Organisationen und Institutionen initiiert und gefördert, um eine nachhaltige Mobilität für die Zukunft zu sichern.

Lessons Learned

Eine große Wirkung konnten auch die Projekte im The- menfeld Ausbildung und Qualifizierung enthalten: das Mobile Schulungszentrum Elektromobilität, die Schau- werkstatt und die e-Fahrerschule konnten in über 50 Veranstaltungen mehr als 80 000 Menschen über Elektromobilität informieren und schulen. Das Mobile Schulungszentrum wird nach der Landesgartenschau in Öhringen das Thema Elektromobilität für ein als Energieeffizienzpark konzipiertes Gewerbegebiet. Das Aktivhaus Bio in der Stuttgarter Weißenhofsiedlung zeigt zudem, dass ein innovatives Energiekonzept und eine selbstlernende Gebäudeführung für die Zukunft der Mobilität viele Menschen näher bringen.

Zu den anderen drei Schaufenster-Regionen in Deutsch-

Wir haben viel erreicht, sind aber noch lange nicht fertig. Das Automobil mit Verbrennungsmotor blickt auf eine mehr als 125-jährige Entwicklungsgeschichte zurück, die immer noch weiter fortgeschrieben wird. Daher liegt es an der Hand, dass die Elektromobilität noch lange nicht am Ende der Entwicklung ist. Die Alltagstauglichkeit ist nachgewiesen, was in vielen Anwendungsfällen fehlt, ist die Wirtschaftlichkeit und die Bereitschaft, unser auf den Verbrennungsmotor ausgerichtetes Mobilitätsystem im Zeichen der neuen Technologie zu verändern.

Lessons Learned

Gelebte Praxis im lebendigen Labor
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landkarte 4 Schaufenster © e-mobil BW</td>
</tr>
<tr>
<td>WAVE 2014</td>
</tr>
<tr>
<td>Kirchentag © e-mobil BW GmbH, Jens Oswald Fotodesign</td>
</tr>
<tr>
<td>Projektleitstelle © e-mobil BW GmbH, Fotostudio KD Busch</td>
</tr>
<tr>
<td>Schaufensterkeyvisual © e-mobil BW</td>
</tr>
<tr>
<td>Elektro-O-Mat © e-mobil BW GmbH, Jens Oswald Fotodesign</td>
</tr>
<tr>
<td>MSE © e-mobil BW GmbH, Fotostudio KD Busch</td>
</tr>
<tr>
<td>Kapitel 1</td>
</tr>
<tr>
<td>shutterstock © Pakhyushchy</td>
</tr>
<tr>
<td>Stuttgart Services</td>
</tr>
<tr>
<td>Stuttgart Services – multi- und intermodal, elektromobil und mehr © SSB Die polygoCard pay – Mobilität, Shopping, städtische Angebote</td>
</tr>
<tr>
<td>Netz-E-2-R</td>
</tr>
<tr>
<td>E-Bike-Station Vaihingen an der Enz © Stadt Vaihingen/Enz Preisverleihung „Land der Ideen“ © NAMOREG</td>
</tr>
<tr>
<td>GaENT</td>
</tr>
<tr>
<td>E-Taxi vor der DEKRA-Niederlassung © DEKRA E-Taxis vor dem Neuen Schloss © R. Goldschmidt</td>
</tr>
<tr>
<td>HyLine-S</td>
</tr>
<tr>
<td>Dieselhybridbusse im Einsatz auf der Linie 43 Dieselhybridbusflotte der SSB AG</td>
</tr>
<tr>
<td>Fellbach ZEROplus</td>
</tr>
<tr>
<td>Elektrofahrzeug im privaten Alltag: Laden an Fraunhofer Ladepunkt © Fraunhofer ISE Screenshirt der App des Energiemanagements mit Integration des E-PKW</td>
</tr>
<tr>
<td>Wohnen und Elektromobilität im Rosensteinviertel Stuttgart</td>
</tr>
<tr>
<td>Blick auf das neue Wohnquartier mit Photovoltaikanlage auf dem Dach Bei Grundsteinlegung des Bauprojekts im Juni 2015</td>
</tr>
<tr>
<td>Aktivhaus B10 – Architektur und Mobilität für Morgen</td>
</tr>
<tr>
<td>Ansicht des E-Lab vom Brackmannsweg © Zooey Braun, Stuttgart Grundriss des Aktivhauses B10 in der Weißenhofsiedlung</td>
</tr>
<tr>
<td>Ludwigsburg Intermodal</td>
</tr>
<tr>
<td>Luftbild Bahnhof Ludwigsburg Radstation mit ausleihbaren Ludwigsburg Bikes</td>
</tr>
<tr>
<td>e-carPark Sindeltingen</td>
</tr>
<tr>
<td>Anstellungseröffnung der eStation</td>
</tr>
<tr>
<td>Aufbau der eStation – erste Schritte Richtung COBIS</td>
</tr>
<tr>
<td>eVerkehrsraum Stuttgart</td>
</tr>
<tr>
<td>Ladevorgänge in der Region Stuttgart Carsharing-Fahrzeuge in der Region Stuttgart</td>
</tr>
<tr>
<td>Kapitel 2</td>
</tr>
<tr>
<td>shutterstock © Rich Carey</td>
</tr>
<tr>
<td>Get eReady</td>
</tr>
<tr>
<td>181 vernetzte Ladepunkte bilden die Infrastrukturgrundlage des Projekts Get eReady Die Projektteilnehmer nutzen 327 Elektro- und Hybridsfahrzeuge</td>
</tr>
<tr>
<td>Landesfuhrpark</td>
</tr>
<tr>
<td>Titelbild © Putair-Fotolia.com Übergabe des Minister-Fahrzeugs durch die Daimler AG © Daimler AG Gefördertes Fahrzeug für das Klinikum am Weissenhof © ZIP Weinsberg</td>
</tr>
<tr>
<td>RheinMobil</td>
</tr>
<tr>
<td>Ein Mobilitäts-Modell, das Grenzen überschreitet</td>
</tr>
<tr>
<td>Urbaner Logistischer Wirtschaftsverkehr</td>
</tr>
<tr>
<td>Die drei kooperierenden Logistikunternehmen mit jeweils einem Fahrzeug zu Gast im Zentrum für Virtuelles Engineering ZVE des Fraunhofer IAO in Stuttgart Viele positive Reaktionen bei Kunden und Passanten auf geräuscharmere Zustellung</td>
</tr>
<tr>
<td>eFleet – elektrische Vorfeldfahrzeuge am Flughafen Stuttgart</td>
</tr>
<tr>
<td>Übersicht der eFleet Fahrzeuge am Flughafen Stuttgart Der elektrische Flugzeugflieger im Einsatz</td>
</tr>
<tr>
<td>Umweltfreundliche Kommunalfahrzeuge</td>
</tr>
<tr>
<td>In zwei bis drei wechselnden Kommunen wird im Ganzjahresetzen eine Flotte von fünf Fahrzeugen getestet Die Feldtestmaschinen sind bereit für ihren Einsatz</td>
</tr>
<tr>
<td>Aufbau Ladeinfrastruktur Stuttgart und Region</td>
</tr>
<tr>
<td>EnBW Ladestation „elektrisiert“ einen e-smart von car2go in Stuttgart</td>
</tr>
<tr>
<td>Ladeinfrastruktur Stuttgart und Region</td>
</tr>
<tr>
<td>Testen neuer Dienstleistungen rund um das Thema Ladeinfrastruktur</td>
</tr>
<tr>
<td>Integriertes Flottenladen</td>
</tr>
<tr>
<td>Ladestation aus dem Projekt InFlott elektrisiert BMW i3 © Michael Joos Kleines Bild © Fraunhofer IAO</td>
</tr>
</tbody>
</table>
Impressum

Herausgeber
e-mobil BW GmbH – Landesagentur für Elektromobilität und Brennstoffzellentechnologie
Schaufenster Elektromobilität LivingLab BW mobil

Redaktion
comunica – Anke Fellmann
e-mobil BW GmbH – Katja Gicklhorn, Dr. Wolfgang Fischer

Koordination
e-mobil BW GmbH
Katja Gicklhorn

Layout/Satz/Illustration
markenrieb
Die Kraft für Marketing und Vertrieb

Fotos
Umschlag: e-mobil BW, Jens Oswald Fotodesign

Für Abbildungen, deren Copyright nicht gesondert ausgewiesen ist, gilt:
Die Bildrechte liegen bei den für den Inhalt der jeweiligen Seiten verantwortlichen Unternehmen/Instituten/Organisationen.

Druck
Karl Elser Druck GmbH
Kißlingweg 35
75417 Mühlacker

Auslieferung und Vertrieb
e-mobil BW GmbH
Leuschnerstr. 45
70176 Stuttgart
Telefon: 0711 / 892385 0
Telefax: 0711 / 892385 49
E-Mail info@e-mobilbw.de
www.e-mobilbw.de

November 2015

© Copyright liegt bei den Herausgebern
Alle Rechte vorbehalten. Dieses Werk ist einschließlich seiner Teile urheberrechtlich geschützt.